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negative. Input ~_ """ > Label , F1 MAP F1 MAP F1 MAP
| | Threshold 0.008 | 0.0004 | 0.0029 | 0.03 | 0.0001 | 0.001
People understand how to recognize a novel object based on: Chance 0.008 | 0.005 | 0.019 | 0.013 | 0.029 | 0.019
* What this object Is (and not what It IS not) Test: Create a classifier for a novel category using one, unseen image. Next One-Class SVM| 0.011 | 0.061 | 0.016 | 0.068 | 0.003 | 0.025
* QOverall lifetime experience (for context) use CNN as a feature extractor and classify query images using newly CLEAR [ours] | 0.176 | 0.364 | 0.087 | 0.193 | 0.111 | 0.209
S o | o created classifier. Larger values are better
The guestion I1s: How can we mimic such human perception abilities?
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